Collaborative targeted maximum likelihood for time to event data.

نویسندگان

  • Ori M Stitelman
  • Mark J van der Laan
چکیده

Current methods used to analyze time to event data either rely on highly parametric assumptions which result in biased estimates of parameters which are purely chosen out of convenience, or are highly unstable because they ignore the global constraints of the true model. By using Targeted Maximum Likelihood Estimation (TMLE) one may consistently estimate parameters which directly answer the statistical question of interest. Targeted Maximum Likelihood Estimators are substitution estimators, which rely on estimating the underlying distribution. However, unlike other substitution estimators, the underlying distribution is estimated specifically to reduce bias in the estimate of the parameter of interest. We will present here an extension of TMLE for observational time to event data, the Collaborative Targeted Maximum Likelihood Estimator (C-TMLE) for the treatment specific survival curve. Through the use of a simulation study we will show that this method improves on commonly used methods in both robustness and efficiency. In fact, we will show that in certain situations the C-TMLE produces estimates whose mean square error is lower than the semi-parametric efficiency bound. We will also demonstrate that a semi-parametric efficient substitution estimator (TMLE) outperforms a semi-parametric efficient non-substitution estimator (the Augmented Inverse Probability Weighted estimator) in sparse data situations. Lastly, we will show that the bootstrap is able to produce valid 95 percent confidence intervals in sparse data situations, while influence curve based inference breaks down.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequential Randomized Controlled Trials

Sequential Randomized Controlled Trials (SRCTs) are rapidly becoming essential tools in the search for optimized treatment regimes in ongoing treatment settings. Analyzing data for multiple time-point treatments with a view toward optimal treatment regimes is of interest in many types of afflictions: HIV infection, Attention Deficit Hyperactivity Disorder in children, leukemia, prostate cancer,...

متن کامل

Targeted maximum likelihood estimation for dynamic treatment regimes in sequentially randomized controlled trials.

Sequential Randomized Controlled Trials (SRCTs) are rapidly becoming essential tools in the search for optimized treatment regimes in ongoing treatment settings. Analyzing data for multiple time-point treatments with a view toward optimal treatment regimes is of interest in many types of afflictions: HIV infection, Attention Deficit Hyperactivity Disorder in children, leukemia, prostate cancer,...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

A general implementation of TMLE for longitudinal data applied to causal inference in survival analysis.

In many randomized controlled trials the outcome of interest is a time to event, and one measures on each subject baseline covariates and time-dependent covariates until the subject either drops-out, the time to event is observed, or the end of study is reached. The goal of such a study is to assess the causal effect of the treatment on the survival curve. We present a targeted maximum likeliho...

متن کامل

An application of collaborative targeted maximum likelihood estimation in causal inference and genomics.

A concrete example of the collaborative double-robust targeted likelihood estimator (C-TMLE) introduced in a companion article in this issue is presented, and applied to the estimation of causal effects and variable importance parameters in genomic data. The focus is on non-parametric estimation in a point treatment data structure. Simulations illustrate the performance of C-TMLE relative to cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The international journal of biostatistics

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2010